

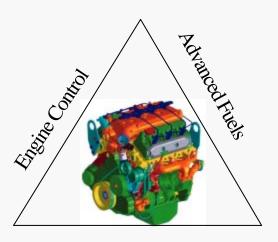
Modeling of Lean Exhaust Emissions Control Systems

Matthew Thornton National Renewable Energy Laboratory

Subcontractor: Ricardo Inc.

DOE program Mangers: Steve Chalk, John Garbak, Steve Goguen

Presented at DEER Conference, August 28, 2002



Project Background

- This project is part of the DOE Advanced Petroleum Based Fuels (APBF) Activity
- One part of this activity is to develop a system modeling tool to evaluate pathways for reducing emissions from CIDI engines and to guide the APBF testing activities
- This project is referred to as System Emission Reduction (SER) analysis
- The intent is to build this system tool around NREL's existing ADVISOR advanced vehicle simulator
- The results that will be presented today are from a small modeling project under this larger SER effort

APBF Activity Emission Reduction Pathway for SUV/Light-Heavy Truck

Emissions Control

Pathway Component	NOx (g/mile)	Particulate Matter (q/mile)	
Baseline	1.0	0.08	
Fuel Formulation	1.0	0.06	
Engine Control Strategies	0.6	0.06	
Emissions Control	0.07	0.01	
Target	0.07	0.01	

Background on ADVISOR

- ADVISOR = ADvanced VehIcle SimulatOR
 - simulates conventional, electric, or hybrid vehicles
- Developed in MATLAB/Simulink environment
- ADVISOR was created in 1994 to support DOE
 - Hybrid Program at NREL
- Released on vehicle systems

 analysis web site for free
 download in September, 1998

(www.nrel.gov/transportation/analysis)

Downloaded by over 4500 people around world

Enhancements to ADVISOR to Address Emissions Impacts of Diesel Powered Vehicles:

 Add vehicle and engine data into ADVISOR library to expand CIDI applications

• Integrate ADVISOR with engine model to enhance predictions of exhaust temperature, space velocity, and

other parameters necessary to predict emission control device efficiency

 Develop CIDI emission control device submodels

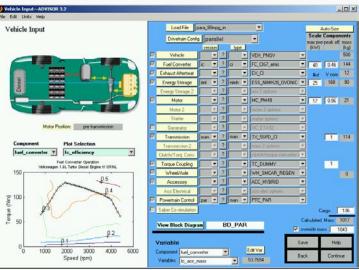
CIDI Engine and Emission Control Modeling

- •Model SUV and 5.0 L engine
- •Simulate three emission control technology bundles
 - Urea SCR with active DPF
 - •NAC with active DPF
 - •LNC with active DPF
- •Test the integration of ADVISOR with engine and emission control models
- •Provide comparative fuel penalty and emission reduction results of the three technologies
 - 1. Relative to achieving Tier 2 bin 5 emissions levels
 - 2. Relative to amount of fuel used per unit of emission reduction

Modeling Approach

- Determine engine speed and load points for the simulated vehicle over the FTP
- Determine engine emissions over speed and load range
- Size catalysts based on emissions stream
- Tune emission control technology models to available data
- Apply emission control models to emissions stream
- Estimate emissions reduction benefit and fuel economy trade-off

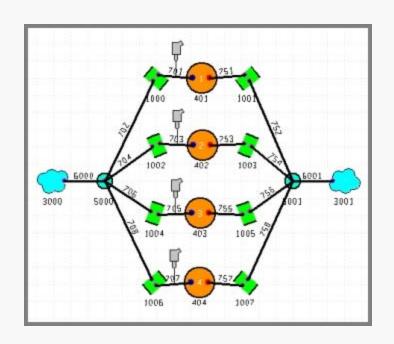
Vehicle Model Details

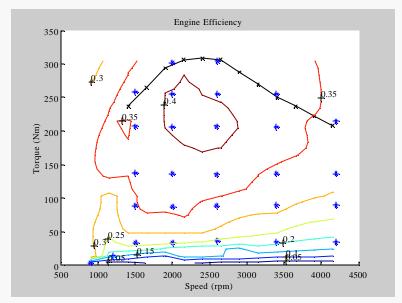

ADVISOR SUV Model

- •Vehicle mass, 2164 kg (4767 lbs)
 - •Based on a Explorer, Grand Cherokee, and Blazer with a 5.0 L CIDI engine and 136 kg (300 lbs) of cargo
- •5 Speed manual transmission

•Provided second by second engine speed and load points

over the FTP

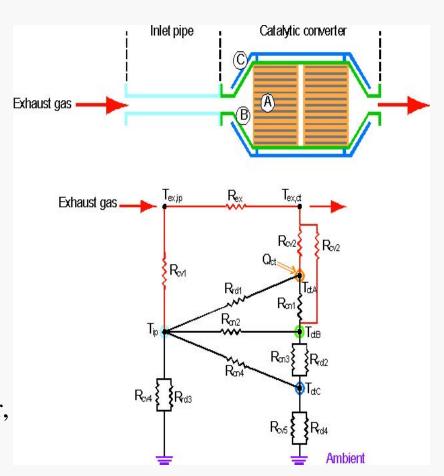




Engine Model Details

WAVE 1-D engine simulation software and engine maps

- •5.0 liter WAVE model
- Based on state-of-the-art technology
- •Provided engine efficiency, exhaust temperature, and space velocity maps
- •Detailed emissions maps based on test data



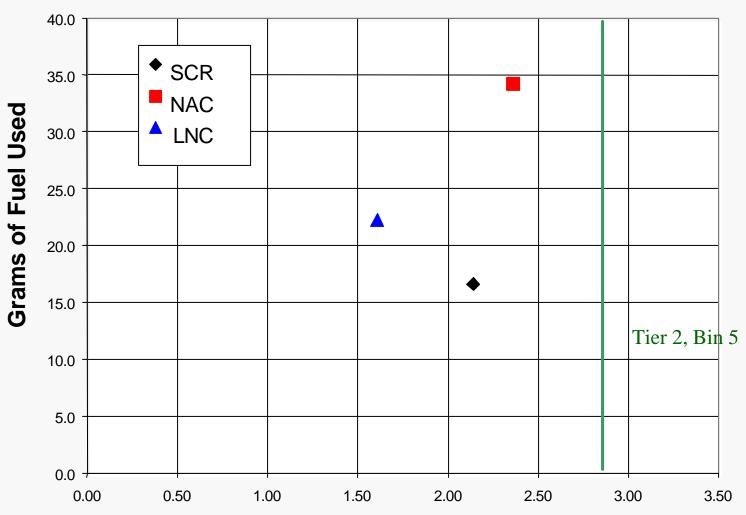
Emission Control Model Details

Ricardo's 1-D, quasi-steady, lumped chemical kinetic emissions control technology models

- •Operate in MATLAB/Simulink environment
- •Models validated to available test data
- •Models sized and configured for this application
- •Models include: mass transfer, heat transfer, global chemical reaction kinetics, and heat of reaction

Modeling Analysis Assumptions

- •Baseline engine out emissions static for all technologies
- •Single catalyst formulation for each technology
- •No additional exhaust heat generation strategies
- •SCR Model
 - •Urea decomposition instantaneous above 180° C
 - •Ideal urea injection, NH₃/NOx ratio of 1:1
- •NAC Model:
 - •Fixed lean/rich cycling
 - •No regeneration below 180° C
 - •Release and reduction of NOx in a single reaction
 - •Reductant limited to CO
 - •Near zero fuel sulfur
- •LNC:
 - •Reductant assumed as propene
 - •Ideal HC injection, C/NOx ratio of 8:1
 - •No reductant injection below 150° C


Simulation Results

	Baseline	SCR + DPF	NAC + DPF	LNC+DPF
NOx (g/mile)	0.32	0.13	0.12	0.17
Tier 2 NOx Emissions Bin	10	8	8	9
Pm (g/mile)	0.057	0.0057	0.0059	0.0057
Fuel Economy (mpg)	24.6	24.4	24.1	24.3
Fuel Economy Penalty	N/A	1.14%	2.41%	1.56%

Simulation Results

Additional Grams Of Fuel Used Versus Grams Of NOx Emissions Reduced

Grams of NOx Emissions Reduced

Factors Influencing Results

Fuel penalty:

Included:

- Exhaust system back pressure
- •Fuel used for reductant
- •Fuel used for DPF regeneration

But did not include:

- •Urea reductant for SCR
- •Fuel used for desulfation of NAC
- •Electrical loads or fuel used for heat generation or rapid warm up routines

Modeling assumptions:

- •Engine out baseline
- •Lumped chemical kinetics
- •Limited ECT optimization

Next Steps--Applications

- Evaluate the impact of thermal management or heat generation strategies
- Test catalyst sizing, design, location, or formulation
- Expand platforms
- Evaluate additional emission control technologies
- Evaluate off-cycle operating points
- Test alternate regeneration strategies
- Evaluate engine down sizing
- Evaluate wider fuel penalty issues
- Evaluate mild hybridization

